Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison

Publication Type:Journal Article
Year of Publication:Submitted
Authors:M. R. Michaud, Denlinger D. L.
Volume:177
Issue:7
Pagination:753 - 763
Keywords:*Carbohydrate Metabolism, *Cold Temperature, Amino Acids/*metabolism, Animals, Diptera/metabolism/*physiology, Gas Chromatography-Mass Spectrometry, Models, Biological, Polymers/*metabolism, Principal Component Analysis, Time Factors
Abstract:

Flesh flies can enhance their cold hardiness by entering a photoperiod-induced pupal diapause or by a temperature-induced rapid cold-hardening process. To determine whether the same or different metabolites are involved in these two responses, derivatized polar extracts from flesh flies subjected to these treatments were examined using gas chromatography-mass spectrophotometry (GC-MS). This metabolomic approach demonstrated that levels of metabolites involved in glycolysis (glycerol, glucose, alanine, pyruvate) were elevated by both treatments. Metabolites elevated uniquely in response to rapid cold-hardening include glutamine, cystathionine, sorbitol, and urea while levels of beta-alanine, ornithine, trehalose, and mannose levels were reduced. Rapid cold-hardening also uniquely perturbed the urea cycle. In addition to the elevated metabolites shared with rapid cold-hardening, leucine concentrations were uniquely elevated during diapause while levels of a number of other amino acids were reduced. Pools of two aerobic metabolic intermediates, fumarate and citrate, were reduced during diapause, indicating a reduction of Krebs cycle activity. Principal component analysis demonstrated that rapid cold-hardening and diapause are metabolically distinct from their untreated, non-diapausing counterparts. We discuss the possible contribution of each altered metabolite in enhancing the overall cold hardiness of the organism, as well as the efficacy of GC-MS metabolomics for investigating insect physiological systems.

Short Title:J Comp Physiol B
Sat, 2014-03-15 09:38 -- tpape
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith